

Na	me:	Date:			
	Student Exploration	on: Ch	ıemical Equ	uations	
co	cabulary: Avogadro's number, chemical efficient, combination, combustion, consectation, molar mass, mole, molecular placement, subscript	ervation of	matter, decomposi	tion, double	
Pri	ior Knowledge Questions (Do these BE	FORE us	ng the Gizmo.)		
1.	A candle is placed on one pan of a bala	nce, and a	an equal weight is p	laced on the other pan.	
	What would happen if you lit up the can	dle and wa	aited for a while?		
Bu no	minutes before running out of oxygen. T In this situation, what would happen if you zmo Warm-up rning is an example of a chemical react atoms are created or destroyed in a che uation will show the same number of each	ou lit up th ion. The la mical read	e candle and waite aw of conservatio n tion. Therefore, a b	d? n of matter states that alanced chemical	
To	set up an equation in the <i>Chemical Equa</i> to boxes of the Gizmo. First, type in "H2+0 oducts box. This represents the reaction	ations Gizi O2" in the	mo™, type the che i Reactants box and	mical formulas into the d "H2O" in the	
	Reactants		Prod	ucts	
	H2+O2	→	H2	20	
1.	Check that the Visual display is chosen A. How many hydrogen atoms are				
	B. How many oxygen atoms are on				
2	Based on what you see is this equation	currently	halanced?		

Activity A:

Get the Gizmo ready:

Interpreting chemical formulas

- Erase the chemical formulas in each text box.
- Check that the Visual displays are selected.

Introduction: To balance a chemical equation, you first need to be able to count how many atoms of each element are on each side of the equation. In this activity, you will practice counting the atoms that are represented in chemical formulas.

Question: How do we read chemical formulas?

1.	<u>Observe</u> : Type "H2" into the Reactants box and hit Enter on your keyboard. Note that the formula is shown as H_2 below. The small "2" in H_2 is a subscript .							
	A.	A. What does the "2" in H ₂ represent?						
	В.	. In general, what do you think a subscript in a chemical formula tells you?						
	C.	C. Try typing in other subscripts next to the H, such as 3, 4, and 5. Is your answer to question B still true? Explain.						
2.	<u>Count</u> : Clear the Reactants box, and type in a more complex chemical formula: "Ca(OH)2." Look at the number of atoms shown.							
	A.	A. How many of each type of atom do you see? Ca: O: H:						
	B.	. In general, what happens when a subscript is found outside of parentheses?						
	C.	C. Try typing in other subscripts next to the (OH), such as 3, 4, and 5. Is your answer to						
		question B still tr	ue? Explain					
3.		<u>ce</u> : For each of the are. Check your ar					:h element	
	AgCl ₃ Cu ₂		Ag:	CI:	Cu:			
	Ba(AsO ₄) ₂		Ва:	As:	O:			
	(NH ₄) ₃ PO ₄		N:	H:	P:	O:		
	$MnPb_8(Si_2O_7)_3$		Mn:	Pb:	Si:	O:		

Activity B:	Get the Gizmo ready:	Atom count
Balancing equations	Erase the chemical formulas in each text box.	✓ The equation is properly

Introduction: In a chemical reaction, the **reactants** are the substances that enter into the reaction, and the **products** are the substances that are made in the reaction. A chemical reaction is balanced if the numbers of reactant atoms match the numbers of product atoms.

Go	al: Lea	rn to balance	any cher	nical equa	ation.				
1.	Observe: To model how hydrogen and oxygen react to make water, type "H2+O2" into the Reactants box and "H2O" into the Products box.								
	As the	equation is w	ritten, whic	ch elemen	t is not in ba	alance?			
	Explaii	າ:							
2.	formula	e: To balance as of the subs ecules of eac	tances inv	olved in th	e reaction.	You are a	llowed to d	change the	
	A.	To balance th	ne oxygen	atoms, ad	d a "2" in fr	ont of the	"H2O" in tl	ne Produc	ts box.
		How many ox	xygen ator	ns are fou	nd on each	side of the	e equation	now?	
	В.	To balance th	ne hydroge	en atoms,	add a "2" in	front of th	e "H2" in t	he Reacta	nts box.
		How many h	ydrogen at	oms are fo	ound on ea	ch side of	the equation	on now? _	
	C.	Is this equation	on current	y balance	d?	Click \$	Show if ba	llanced to	check.
3.		Now enter a r mbers of each				n: Ca(OH) ₂	+ HBr →	CaBr ₂ + H ₂	₂O. List
			tants		1			lucts	
	Са	0	Н	Br		Са	0	Н	Br
	A.	Which eleme	nts are ou	t of baland	e?				

When the equation is balanced, write the complete formula below:

B. Add coefficients to balance first the bromine (Br) and then the hydrogen (H) atoms.

(Activity B continued on next page)

Activity B (continued from previous page)

4. <u>Practice</u>: Chemical reactions are generally classified into five groups, defined below. Balance each equation, using the Gizmo for help.

Combination (or *synthesis*) – two or more elements combine to form a compound.

• La₂O₃ + H₂O
$$\rightarrow$$
 La(OH)₃

•
$$N_2O_5 + H_2O \rightarrow HNO_3$$

Decomposition – a compound breaks down into elements and/or simpler compounds.

•
$$NH_4NO_3 \rightarrow N_2O + H_2O$$

Combustion – a fuel reacts with oxygen to release carbon dioxide, water, and heat.

•
$$CH_4 + O_2 \rightarrow CO_2 + H_2O$$

•
$$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$$

•
$$C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O$$

Single replacement – an element replaces another element in a compound.

• KCl +
$$F_2 \rightarrow KF + Cl_2$$

• Mg + HCl
$$\rightarrow$$
 MgCl₂ + H₂

• Cu + AgNO₃
$$\rightarrow$$
 Cu(NO₃)₂ + Ag _____

Double replacement – two compounds switch parts with one another.

• AgNO₃ + K₂SO₄
$$\rightarrow$$
 Ag₂SO₄ + KNO₃

•
$$Mg(OH)_2 + HCI \rightarrow MgCl_2 + H_2O$$

•
$$AI(OH)_3 + H_2SO_4 \rightarrow AI_2(SO_4)_3 + H_2O$$

Activity C:	Get the Gizmo ready:	Reactants
Molar mass	 Erase the chemical formulas in each text box. In the middle menu, select Molar mass. 	Total molar mass: 610.714 g

Introduction: Chemists are often interested in obtaining a certain mass of product from a chemical reaction without wasting any reactants. But how is this done? To calculate the masses of reactants needed for a desired mass of product, it is necessary to understand a unit of quantity called the **mole**.

Question: How do chemists know how much of each substance to mix?

1.	mass is	measured in unive	ersal mass units (u). (ce is its molecular mas One universal mass uni gas has a molecular ma	t (1 u) is
	Α	Гуре the formula "l	H2" into the Reactan t	s box. What is the mo l	ar mass of hydrogen
	Ç	gas, H₂?			
	В. \	What is the relation	nship between the mo	lecular mass and the n	nolar mass of a
	5	substance?			
	called A that is e	vogadro's number qual to the molecu	er, is special because llar mass of the subst	es (or atoms) of a subset a mole of a substance ance. Moles are handy articles as a mole of and	has a mass in grams because a mole of
2.	Gather data: The balanced equation to synthesize water is: $2H_2 + O_2 \rightarrow 2H_2O$. Use the Gizmo to find the molar masses of each substance in this equation:				
	2H ₂		O ₂	2H ₂ O _	
3.	Analyze	: Based on the mo	lar masses, how can	you tell that an equatio	on is balanced?
4.				O_2). How many moles on O_2 by moles of O_2 0 would	

(Activity C continued on next page)

Activity C (continued from previous page)

5.	<u>Calcula</u>	Calculate: Suppose you had 2.0158 grams of hydrogen (H ₂).				
	A.	How many moles of hydrogen do you have?				
	B.	How many moles of oxygen would react with this much hydrogen?				
	C.	What mass of oxygen would you need for this reaction?				
	D.	How many grams of water would you produce?				
6.	<u>Challe</u>	nge yourself: Suppose you wanted to make 100 grams of water.				
	A.	What is the molar mass of water (H ₂ O)?				
	B.	How many moles of water are in 100 grams?				
	C.	How many moles of hydrogen will you need?				
	D.	How many moles of oxygen will you need?				
	E.	How many grams of hydrogen and oxygen will you need?				
		Hydrogen: Oxygen:				
	F.	Is your answer reasonable? Why or why not?				
7.	Summ	arize: Why is it useful to use moles to measure chemical quantities?				

